001// License: GPL. For details, see LICENSE file. 002package org.openstreetmap.josm.gui; 003 004import java.awt.Cursor; 005import java.awt.Point; 006import java.awt.Rectangle; 007import java.awt.event.ComponentAdapter; 008import java.awt.event.ComponentEvent; 009import java.awt.event.HierarchyEvent; 010import java.awt.event.HierarchyListener; 011import java.awt.geom.AffineTransform; 012import java.awt.geom.Point2D; 013import java.nio.charset.StandardCharsets; 014import java.text.NumberFormat; 015import java.util.ArrayList; 016import java.util.Collection; 017import java.util.Collections; 018import java.util.HashSet; 019import java.util.LinkedList; 020import java.util.List; 021import java.util.Map; 022import java.util.Map.Entry; 023import java.util.Set; 024import java.util.Stack; 025import java.util.TreeMap; 026import java.util.concurrent.CopyOnWriteArrayList; 027import java.util.function.Predicate; 028import java.util.stream.Collectors; 029import java.util.zip.CRC32; 030 031import javax.swing.JComponent; 032import javax.swing.SwingUtilities; 033 034import org.openstreetmap.josm.data.Bounds; 035import org.openstreetmap.josm.data.ProjectionBounds; 036import org.openstreetmap.josm.data.SystemOfMeasurement; 037import org.openstreetmap.josm.data.ViewportData; 038import org.openstreetmap.josm.data.coor.EastNorth; 039import org.openstreetmap.josm.data.coor.ILatLon; 040import org.openstreetmap.josm.data.coor.LatLon; 041import org.openstreetmap.josm.data.osm.BBox; 042import org.openstreetmap.josm.data.osm.DataSet; 043import org.openstreetmap.josm.data.osm.Node; 044import org.openstreetmap.josm.data.osm.OsmPrimitive; 045import org.openstreetmap.josm.data.osm.Relation; 046import org.openstreetmap.josm.data.osm.Way; 047import org.openstreetmap.josm.data.osm.WaySegment; 048import org.openstreetmap.josm.data.osm.visitor.BoundingXYVisitor; 049import org.openstreetmap.josm.data.preferences.BooleanProperty; 050import org.openstreetmap.josm.data.preferences.DoubleProperty; 051import org.openstreetmap.josm.data.preferences.IntegerProperty; 052import org.openstreetmap.josm.data.projection.Projection; 053import org.openstreetmap.josm.data.projection.ProjectionChangeListener; 054import org.openstreetmap.josm.data.projection.ProjectionRegistry; 055import org.openstreetmap.josm.gui.help.Helpful; 056import org.openstreetmap.josm.gui.layer.NativeScaleLayer; 057import org.openstreetmap.josm.gui.layer.NativeScaleLayer.Scale; 058import org.openstreetmap.josm.gui.layer.NativeScaleLayer.ScaleList; 059import org.openstreetmap.josm.gui.mappaint.MapPaintStyles; 060import org.openstreetmap.josm.gui.mappaint.mapcss.MapCSSStyleSource; 061import org.openstreetmap.josm.gui.util.CursorManager; 062import org.openstreetmap.josm.gui.util.GuiHelper; 063import org.openstreetmap.josm.spi.preferences.Config; 064import org.openstreetmap.josm.tools.Logging; 065import org.openstreetmap.josm.tools.Utils; 066 067/** 068 * A component that can be navigated by a {@link MapMover}. Used as map view and for the 069 * zoomer in the download dialog. 070 * 071 * @author imi 072 * @since 41 073 */ 074public class NavigatableComponent extends JComponent implements Helpful { 075 076 private static final double ALIGNMENT_EPSILON = 1e-3; 077 078 /** 079 * Interface to notify listeners of the change of the zoom area. 080 * @since 10600 (functional interface) 081 */ 082 @FunctionalInterface 083 public interface ZoomChangeListener { 084 /** 085 * Method called when the zoom area has changed. 086 */ 087 void zoomChanged(); 088 } 089 090 /** 091 * To determine if a primitive is currently selectable. 092 */ 093 public transient Predicate<OsmPrimitive> isSelectablePredicate = prim -> { 094 if (!prim.isSelectable()) return false; 095 // if it isn't displayed on screen, you cannot click on it 096 MapCSSStyleSource.STYLE_SOURCE_LOCK.readLock().lock(); 097 try { 098 return !MapPaintStyles.getStyles().get(prim, getDist100Pixel(), this).isEmpty(); 099 } finally { 100 MapCSSStyleSource.STYLE_SOURCE_LOCK.readLock().unlock(); 101 } 102 }; 103 104 /** Snap distance */ 105 public static final IntegerProperty PROP_SNAP_DISTANCE = new IntegerProperty("mappaint.node.snap-distance", 10); 106 /** Zoom steps to get double scale */ 107 public static final DoubleProperty PROP_ZOOM_RATIO = new DoubleProperty("zoom.ratio", 2.0); 108 /** Divide intervals between native resolution levels to smaller steps if they are much larger than zoom ratio */ 109 public static final BooleanProperty PROP_ZOOM_INTERMEDIATE_STEPS = new BooleanProperty("zoom.intermediate-steps", true); 110 /** scale follows native resolution of layer status when layer is created */ 111 public static final BooleanProperty PROP_ZOOM_SCALE_FOLLOW_NATIVE_RES_AT_LOAD = new BooleanProperty( 112 "zoom.scale-follow-native-resolution-at-load", true); 113 114 /** 115 * The layer which scale is set to. 116 */ 117 private transient NativeScaleLayer nativeScaleLayer; 118 119 /** 120 * the zoom listeners 121 */ 122 private static final CopyOnWriteArrayList<ZoomChangeListener> zoomChangeListeners = new CopyOnWriteArrayList<>(); 123 124 /** 125 * Removes a zoom change listener 126 * 127 * @param listener the listener. Ignored if null or already absent 128 */ 129 public static void removeZoomChangeListener(ZoomChangeListener listener) { 130 zoomChangeListeners.remove(listener); 131 } 132 133 /** 134 * Adds a zoom change listener 135 * 136 * @param listener the listener. Ignored if null or already registered. 137 */ 138 public static void addZoomChangeListener(ZoomChangeListener listener) { 139 if (listener != null) { 140 zoomChangeListeners.addIfAbsent(listener); 141 } 142 } 143 144 protected static void fireZoomChanged() { 145 GuiHelper.runInEDTAndWait(() -> { 146 for (ZoomChangeListener l : zoomChangeListeners) { 147 l.zoomChanged(); 148 } 149 }); 150 } 151 152 // The only events that may move/resize this map view are window movements or changes to the map view size. 153 // We can clean this up more by only recalculating the state on repaint. 154 private final transient HierarchyListener hierarchyListener = e -> { 155 long interestingFlags = HierarchyEvent.ANCESTOR_MOVED | HierarchyEvent.SHOWING_CHANGED; 156 if ((e.getChangeFlags() & interestingFlags) != 0) { 157 updateLocationState(); 158 } 159 }; 160 161 private final transient ComponentAdapter componentListener = new ComponentAdapter() { 162 @Override 163 public void componentShown(ComponentEvent e) { 164 updateLocationState(); 165 } 166 167 @Override 168 public void componentResized(ComponentEvent e) { 169 updateLocationState(); 170 } 171 }; 172 173 protected transient ViewportData initialViewport; 174 175 protected final transient CursorManager cursorManager = new CursorManager(this); 176 177 /** 178 * The current state (scale, center, ...) of this map view. 179 */ 180 private transient MapViewState state; 181 182 /** 183 * Main uses weak link to store this, so we need to keep a reference. 184 */ 185 private final ProjectionChangeListener projectionChangeListener = (oldValue, newValue) -> fixProjection(); 186 187 /** 188 * Constructs a new {@code NavigatableComponent}. 189 */ 190 public NavigatableComponent() { 191 setLayout(null); 192 state = MapViewState.createDefaultState(getWidth(), getHeight()); 193 ProjectionRegistry.addProjectionChangeListener(projectionChangeListener); 194 } 195 196 @Override 197 public void addNotify() { 198 updateLocationState(); 199 addHierarchyListener(hierarchyListener); 200 addComponentListener(componentListener); 201 super.addNotify(); 202 } 203 204 @Override 205 public void removeNotify() { 206 removeHierarchyListener(hierarchyListener); 207 removeComponentListener(componentListener); 208 super.removeNotify(); 209 } 210 211 /** 212 * Choose a layer that scale will be snap to its native scales. 213 * @param nativeScaleLayer layer to which scale will be snapped 214 */ 215 public void setNativeScaleLayer(NativeScaleLayer nativeScaleLayer) { 216 this.nativeScaleLayer = nativeScaleLayer; 217 zoomTo(getCenter(), scaleRound(getScale())); 218 repaint(); 219 } 220 221 /** 222 * Replies the layer which scale is set to. 223 * @return the current scale layer (may be null) 224 */ 225 public NativeScaleLayer getNativeScaleLayer() { 226 return nativeScaleLayer; 227 } 228 229 /** 230 * Get a new scale that is zoomed in from previous scale 231 * and snapped to selected native scale layer. 232 * @return new scale 233 */ 234 public double scaleZoomIn() { 235 return scaleZoomManyTimes(-1); 236 } 237 238 /** 239 * Get a new scale that is zoomed out from previous scale 240 * and snapped to selected native scale layer. 241 * @return new scale 242 */ 243 public double scaleZoomOut() { 244 return scaleZoomManyTimes(1); 245 } 246 247 /** 248 * Get a new scale that is zoomed in/out a number of times 249 * from previous scale and snapped to selected native scale layer. 250 * @param times count of zoom operations, negative means zoom in 251 * @return new scale 252 */ 253 public double scaleZoomManyTimes(int times) { 254 if (nativeScaleLayer != null) { 255 ScaleList scaleList = nativeScaleLayer.getNativeScales(); 256 if (scaleList != null) { 257 if (PROP_ZOOM_INTERMEDIATE_STEPS.get()) { 258 scaleList = scaleList.withIntermediateSteps(PROP_ZOOM_RATIO.get()); 259 } 260 Scale s = scaleList.scaleZoomTimes(getScale(), PROP_ZOOM_RATIO.get(), times); 261 return s != null ? s.getScale() : 0; 262 } 263 } 264 return getScale() * Math.pow(PROP_ZOOM_RATIO.get(), times); 265 } 266 267 /** 268 * Get a scale snapped to native resolutions, use round method. 269 * It gives nearest step from scale list. 270 * Use round method. 271 * @param scale to snap 272 * @return snapped scale 273 */ 274 public double scaleRound(double scale) { 275 return scaleSnap(scale, false); 276 } 277 278 /** 279 * Get a scale snapped to native resolutions. 280 * It gives nearest lower step from scale list, usable to fit objects. 281 * @param scale to snap 282 * @return snapped scale 283 */ 284 public double scaleFloor(double scale) { 285 return scaleSnap(scale, true); 286 } 287 288 /** 289 * Get a scale snapped to native resolutions. 290 * It gives nearest lower step from scale list, usable to fit objects. 291 * @param scale to snap 292 * @param floor use floor instead of round, set true when fitting view to objects 293 * @return new scale 294 */ 295 public double scaleSnap(double scale, boolean floor) { 296 if (nativeScaleLayer != null) { 297 ScaleList scaleList = nativeScaleLayer.getNativeScales(); 298 if (scaleList != null) { 299 if (PROP_ZOOM_INTERMEDIATE_STEPS.get()) { 300 scaleList = scaleList.withIntermediateSteps(PROP_ZOOM_RATIO.get()); 301 } 302 Scale snapscale = scaleList.getSnapScale(scale, PROP_ZOOM_RATIO.get(), floor); 303 return snapscale != null ? snapscale.getScale() : scale; 304 } 305 } 306 return scale; 307 } 308 309 /** 310 * Zoom in current view. Use configured zoom step and scaling settings. 311 */ 312 public void zoomIn() { 313 zoomTo(state.getCenter().getEastNorth(), scaleZoomIn()); 314 } 315 316 /** 317 * Zoom out current view. Use configured zoom step and scaling settings. 318 */ 319 public void zoomOut() { 320 zoomTo(state.getCenter().getEastNorth(), scaleZoomOut()); 321 } 322 323 protected void updateLocationState() { 324 if (isVisibleOnScreen()) { 325 state = state.usingLocation(this); 326 } 327 } 328 329 protected boolean isVisibleOnScreen() { 330 return SwingUtilities.getWindowAncestor(this) != null && isShowing(); 331 } 332 333 /** 334 * Changes the projection settings used for this map view. 335 * <p> 336 * Made public temporarily, will be made private later. 337 */ 338 public void fixProjection() { 339 state = state.usingProjection(ProjectionRegistry.getProjection()); 340 repaint(); 341 } 342 343 /** 344 * Gets the current view state. This includes the scale, the current view area and the position. 345 * @return The current state. 346 */ 347 public MapViewState getState() { 348 return state; 349 } 350 351 /** 352 * Returns the text describing the given distance in the current system of measurement. 353 * @param dist The distance in metres. 354 * @return the text describing the given distance in the current system of measurement. 355 * @since 3406 356 */ 357 public static String getDistText(double dist) { 358 return SystemOfMeasurement.getSystemOfMeasurement().getDistText(dist); 359 } 360 361 /** 362 * Returns the text describing the given distance in the current system of measurement. 363 * @param dist The distance in metres 364 * @param format A {@link NumberFormat} to format the area value 365 * @param threshold Values lower than this {@code threshold} are displayed as {@code "< [threshold]"} 366 * @return the text describing the given distance in the current system of measurement. 367 * @since 7135 368 */ 369 public static String getDistText(final double dist, final NumberFormat format, final double threshold) { 370 return SystemOfMeasurement.getSystemOfMeasurement().getDistText(dist, format, threshold); 371 } 372 373 /** 374 * Returns the text describing the distance in meter that correspond to 100 px on screen. 375 * @return the text describing the distance in meter that correspond to 100 px on screen 376 */ 377 public String getDist100PixelText() { 378 return getDistText(getDist100Pixel()); 379 } 380 381 /** 382 * Get the distance in meter that correspond to 100 px on screen. 383 * 384 * @return the distance in meter that correspond to 100 px on screen 385 */ 386 public double getDist100Pixel() { 387 return getDist100Pixel(true); 388 } 389 390 /** 391 * Get the distance in meter that correspond to 100 px on screen. 392 * 393 * @param alwaysPositive if true, makes sure the return value is always 394 * > 0. (Two points 100 px apart can appear to be identical if the user 395 * has zoomed out a lot and the projection code does something funny.) 396 * @return the distance in meter that correspond to 100 px on screen 397 */ 398 public double getDist100Pixel(boolean alwaysPositive) { 399 int w = getWidth()/2; 400 int h = getHeight()/2; 401 LatLon ll1 = getLatLon(w-50, h); 402 LatLon ll2 = getLatLon(w+50, h); 403 double gcd = ll1.greatCircleDistance(ll2); 404 if (alwaysPositive && gcd <= 0) 405 return 0.1; 406 return gcd; 407 } 408 409 /** 410 * Returns the current center of the viewport. 411 * 412 * (Use {@link #zoomTo(EastNorth)} to the change the center.) 413 * 414 * @return the current center of the viewport 415 */ 416 public EastNorth getCenter() { 417 return state.getCenter().getEastNorth(); 418 } 419 420 /** 421 * Returns the current scale. 422 * 423 * In east/north units per pixel. 424 * 425 * @return the current scale 426 */ 427 public double getScale() { 428 return state.getScale(); 429 } 430 431 /** 432 * Returns geographic coordinates from a specific pixel coordination on the screen. 433 * @param x X-Pixelposition to get coordinate from 434 * @param y Y-Pixelposition to get coordinate from 435 * 436 * @return Geographic coordinates from a specific pixel coordination on the screen. 437 */ 438 public EastNorth getEastNorth(int x, int y) { 439 return state.getForView(x, y).getEastNorth(); 440 } 441 442 /** 443 * Determines the projection bounds of view area. 444 * @return the projection bounds of view area 445 */ 446 public ProjectionBounds getProjectionBounds() { 447 return getState().getViewArea().getProjectionBounds(); 448 } 449 450 /* FIXME: replace with better method - used by MapSlider */ 451 public ProjectionBounds getMaxProjectionBounds() { 452 Bounds b = getProjection().getWorldBoundsLatLon(); 453 return new ProjectionBounds(getProjection().latlon2eastNorth(b.getMin()), 454 getProjection().latlon2eastNorth(b.getMax())); 455 } 456 457 /* FIXME: replace with better method - used by Main to reset Bounds when projection changes, don't use otherwise */ 458 public Bounds getRealBounds() { 459 return getState().getViewArea().getCornerBounds(); 460 } 461 462 /** 463 * Returns unprojected geographic coordinates for a specific pixel position on the screen. 464 * @param x X-Pixelposition to get coordinate from 465 * @param y Y-Pixelposition to get coordinate from 466 * 467 * @return Geographic unprojected coordinates from a specific pixel position on the screen. 468 */ 469 public LatLon getLatLon(int x, int y) { 470 return getProjection().eastNorth2latlon(getEastNorth(x, y)); 471 } 472 473 /** 474 * Returns unprojected geographic coordinates for a specific pixel position on the screen. 475 * @param x X-Pixelposition to get coordinate from 476 * @param y Y-Pixelposition to get coordinate from 477 * 478 * @return Geographic unprojected coordinates from a specific pixel position on the screen. 479 */ 480 public LatLon getLatLon(double x, double y) { 481 return getLatLon((int) x, (int) y); 482 } 483 484 /** 485 * Determines the projection bounds of given rectangle. 486 * @param r rectangle 487 * @return the projection bounds of {@code r} 488 */ 489 public ProjectionBounds getProjectionBounds(Rectangle r) { 490 return getState().getViewArea(r).getProjectionBounds(); 491 } 492 493 /** 494 * Returns minimum bounds that will cover a given rectangle. 495 * @param r rectangle 496 * @return Minimum bounds that will cover rectangle 497 */ 498 public Bounds getLatLonBounds(Rectangle r) { 499 return ProjectionRegistry.getProjection().getLatLonBoundsBox(getProjectionBounds(r)); 500 } 501 502 /** 503 * Creates an affine transform that is used to convert the east/north coordinates to view coordinates. 504 * @return The affine transform. 505 */ 506 public AffineTransform getAffineTransform() { 507 return getState().getAffineTransform(); 508 } 509 510 /** 511 * Return the point on the screen where this Coordinate would be. 512 * @param p The point, where this geopoint would be drawn. 513 * @return The point on screen where "point" would be drawn, relative to the own top/left. 514 */ 515 public Point2D getPoint2D(EastNorth p) { 516 if (null == p) 517 return new Point(); 518 return getState().getPointFor(p).getInView(); 519 } 520 521 /** 522 * Return the point on the screen where this Coordinate would be. 523 * 524 * Alternative: {@link #getState()}, then {@link MapViewState#getPointFor(ILatLon)} 525 * @param latlon The point, where this geopoint would be drawn. 526 * @return The point on screen where "point" would be drawn, relative to the own top/left. 527 */ 528 public Point2D getPoint2D(ILatLon latlon) { 529 if (latlon == null) { 530 return new Point(); 531 } else { 532 return getPoint2D(latlon.getEastNorth(ProjectionRegistry.getProjection())); 533 } 534 } 535 536 /** 537 * Return the point on the screen where this Coordinate would be. 538 * 539 * Alternative: {@link #getState()}, then {@link MapViewState#getPointFor(ILatLon)} 540 * @param latlon The point, where this geopoint would be drawn. 541 * @return The point on screen where "point" would be drawn, relative to the own top/left. 542 */ 543 public Point2D getPoint2D(LatLon latlon) { 544 return getPoint2D((ILatLon) latlon); 545 } 546 547 /** 548 * Return the point on the screen where this Node would be. 549 * 550 * Alternative: {@link #getState()}, then {@link MapViewState#getPointFor(ILatLon)} 551 * @param n The node, where this geopoint would be drawn. 552 * @return The point on screen where "node" would be drawn, relative to the own top/left. 553 */ 554 public Point2D getPoint2D(Node n) { 555 return getPoint2D(n.getEastNorth()); 556 } 557 558 /** 559 * looses precision, may overflow (depends on p and current scale) 560 * @param p east/north 561 * @return point 562 * @see #getPoint2D(EastNorth) 563 */ 564 public Point getPoint(EastNorth p) { 565 Point2D d = getPoint2D(p); 566 return new Point((int) d.getX(), (int) d.getY()); 567 } 568 569 /** 570 * looses precision, may overflow (depends on p and current scale) 571 * @param latlon lat/lon 572 * @return point 573 * @see #getPoint2D(LatLon) 574 * @since 12725 575 */ 576 public Point getPoint(ILatLon latlon) { 577 Point2D d = getPoint2D(latlon); 578 return new Point((int) d.getX(), (int) d.getY()); 579 } 580 581 /** 582 * looses precision, may overflow (depends on p and current scale) 583 * @param latlon lat/lon 584 * @return point 585 * @see #getPoint2D(LatLon) 586 */ 587 public Point getPoint(LatLon latlon) { 588 return getPoint((ILatLon) latlon); 589 } 590 591 /** 592 * looses precision, may overflow (depends on p and current scale) 593 * @param n node 594 * @return point 595 * @see #getPoint2D(Node) 596 */ 597 public Point getPoint(Node n) { 598 Point2D d = getPoint2D(n); 599 return new Point((int) d.getX(), (int) d.getY()); 600 } 601 602 /** 603 * Zoom to the given coordinate and scale. 604 * 605 * @param newCenter The center x-value (easting) to zoom to. 606 * @param newScale The scale to use. 607 */ 608 public void zoomTo(EastNorth newCenter, double newScale) { 609 zoomTo(newCenter, newScale, false); 610 } 611 612 /** 613 * Zoom to the given coordinate and scale. 614 * 615 * @param center The center x-value (easting) to zoom to. 616 * @param scale The scale to use. 617 * @param initial true if this call initializes the viewport. 618 */ 619 public void zoomTo(EastNorth center, double scale, boolean initial) { 620 Bounds b = getProjection().getWorldBoundsLatLon(); 621 ProjectionBounds pb = getProjection().getWorldBoundsBoxEastNorth(); 622 double newScale = scale; 623 int width = getWidth(); 624 int height = getHeight(); 625 626 // make sure, the center of the screen is within projection bounds 627 double east = center.east(); 628 double north = center.north(); 629 east = Math.max(east, pb.minEast); 630 east = Math.min(east, pb.maxEast); 631 north = Math.max(north, pb.minNorth); 632 north = Math.min(north, pb.maxNorth); 633 EastNorth newCenter = new EastNorth(east, north); 634 635 // don't zoom out too much, the world bounds should be at least 636 // half the size of the screen 637 double pbHeight = pb.maxNorth - pb.minNorth; 638 if (height > 0 && 2 * pbHeight < height * newScale) { 639 double newScaleH = 2 * pbHeight / height; 640 double pbWidth = pb.maxEast - pb.minEast; 641 if (width > 0 && 2 * pbWidth < width * newScale) { 642 double newScaleW = 2 * pbWidth / width; 643 newScale = Math.max(newScaleH, newScaleW); 644 } 645 } 646 647 // don't zoom in too much, minimum: 100 px = 1 cm 648 LatLon ll1 = getLatLon(width / 2 - 50, height / 2); 649 LatLon ll2 = getLatLon(width / 2 + 50, height / 2); 650 if (ll1.isValid() && ll2.isValid() && b.contains(ll1) && b.contains(ll2)) { 651 double dm = ll1.greatCircleDistance(ll2); 652 double den = 100 * getScale(); 653 double scaleMin = 0.01 * den / dm / 100; 654 if (newScale < scaleMin && !Double.isInfinite(scaleMin)) { 655 newScale = scaleMin; 656 } 657 } 658 659 // snap scale to imagery if needed 660 newScale = scaleRound(newScale); 661 662 // Align to the pixel grid: 663 // This is a sub-pixel correction to ensure consistent drawing at a certain scale. 664 // For example take 2 nodes, that have a distance of exactly 2.6 pixels. 665 // Depending on the offset, the distance in rounded or truncated integer 666 // pixels will be 2 or 3. It is preferable to have a consistent distance 667 // and not switch back and forth as the viewport moves. This can be achieved by 668 // locking an arbitrary point to integer pixel coordinates. (Here the EastNorth 669 // origin is used as reference point.) 670 // Note that the normal right mouse button drag moves the map by integer pixel 671 // values, so it is not an issue in this case. It only shows when zooming 672 // in & back out, etc. 673 MapViewState mvs = getState().usingScale(newScale); 674 mvs = mvs.movedTo(mvs.getCenter(), newCenter); 675 Point2D enOrigin = mvs.getPointFor(new EastNorth(0, 0)).getInView(); 676 // as a result of the alignment, it is common to round "half integer" values 677 // like 1.49999, which is numerically unstable; add small epsilon to resolve this 678 Point2D enOriginAligned = new Point2D.Double( 679 Math.round(enOrigin.getX()) + ALIGNMENT_EPSILON, 680 Math.round(enOrigin.getY()) + ALIGNMENT_EPSILON); 681 EastNorth enShift = mvs.getForView(enOriginAligned.getX(), enOriginAligned.getY()).getEastNorth(); 682 newCenter = newCenter.subtract(enShift); 683 684 EastNorth oldCenter = getCenter(); 685 if (!newCenter.equals(oldCenter) || !Utils.equalsEpsilon(getScale(), newScale)) { 686 if (!initial) { 687 pushZoomUndo(oldCenter, getScale()); 688 } 689 zoomNoUndoTo(newCenter, newScale, initial); 690 } 691 } 692 693 /** 694 * Zoom to the given coordinate without adding to the zoom undo buffer. 695 * 696 * @param newCenter The center x-value (easting) to zoom to. 697 * @param newScale The scale to use. 698 * @param initial true if this call initializes the viewport. 699 */ 700 private void zoomNoUndoTo(EastNorth newCenter, double newScale, boolean initial) { 701 if (!Utils.equalsEpsilon(getScale(), newScale)) { 702 state = state.usingScale(newScale); 703 } 704 if (!newCenter.equals(getCenter())) { 705 state = state.movedTo(state.getCenter(), newCenter); 706 } 707 if (!initial) { 708 repaint(); 709 fireZoomChanged(); 710 } 711 } 712 713 /** 714 * Zoom to given east/north. 715 * @param newCenter new center coordinates 716 */ 717 public void zoomTo(EastNorth newCenter) { 718 zoomTo(newCenter, getScale()); 719 } 720 721 /** 722 * Zoom to given lat/lon. 723 * @param newCenter new center coordinates 724 * @since 12725 725 */ 726 public void zoomTo(ILatLon newCenter) { 727 zoomTo(getProjection().latlon2eastNorth(newCenter)); 728 } 729 730 /** 731 * Zoom to given lat/lon. 732 * @param newCenter new center coordinates 733 */ 734 public void zoomTo(LatLon newCenter) { 735 zoomTo((ILatLon) newCenter); 736 } 737 738 /** 739 * Thread class for smooth scrolling. Made a separate class, so we can safely terminate it. 740 */ 741 private class SmoothScrollThread extends Thread { 742 private boolean doStop; 743 private final EastNorth oldCenter = getCenter(); 744 private final EastNorth finalNewCenter; 745 private final long frames; 746 private final long sleepTime; 747 748 SmoothScrollThread(EastNorth newCenter, long frameNum, int fps) { 749 super("smooth-scroller"); 750 finalNewCenter = newCenter; 751 frames = frameNum; 752 sleepTime = 1000L / fps; 753 } 754 755 @Override 756 public void run() { 757 try { 758 for (int i = 0; i < frames && !doStop; i++) { 759 final EastNorth z = oldCenter.interpolate(finalNewCenter, (1.0+i) / frames); 760 GuiHelper.runInEDTAndWait(() -> { 761 zoomTo(z); 762 }); 763 Thread.sleep(sleepTime); 764 } 765 } catch (InterruptedException ex) { 766 Logging.warn("Interruption during smooth scrolling"); 767 } 768 } 769 770 public void stopIt() { 771 doStop = true; 772 } 773 } 774 775 /** 776 * Create a thread that moves the viewport to the given center in an animated fashion. 777 * @param newCenter new east/north center 778 */ 779 public void smoothScrollTo(EastNorth newCenter) { 780 final EastNorth oldCenter = getCenter(); 781 if (!newCenter.equals(oldCenter)) { 782 final int fps = Config.getPref().getInt("smooth.scroll.fps", 20); // animation frames per second 783 final int speed = Config.getPref().getInt("smooth.scroll.speed", 1500); // milliseconds for full-screen-width pan 784 final int maxtime = Config.getPref().getInt("smooth.scroll.maxtime", 5000); // milliseconds maximum scroll time 785 final double distance = newCenter.distance(oldCenter) / getScale(); 786 double milliseconds = distance / getWidth() * speed; 787 if (milliseconds > maxtime) { // prevent overlong scroll time, speed up if necessary 788 milliseconds = maxtime; 789 } 790 791 ThreadGroup group = Thread.currentThread().getThreadGroup(); 792 Thread[] threads = new Thread[group.activeCount()]; 793 group.enumerate(threads, true); 794 boolean stopped = false; 795 for (Thread t : threads) { 796 if (t instanceof SmoothScrollThread) { 797 ((SmoothScrollThread) t).stopIt(); 798 /* handle this case outside in case there is more than one smooth thread */ 799 stopped = true; 800 } 801 } 802 if (stopped && milliseconds > maxtime/2.0) { /* we aren't fast enough, skip smooth */ 803 Logging.warn("Skip smooth scrolling"); 804 zoomTo(newCenter); 805 } else { 806 long frames = Math.round(milliseconds * fps / 1000); 807 if (frames <= 1) 808 zoomTo(newCenter); 809 else 810 new SmoothScrollThread(newCenter, frames, fps).start(); 811 } 812 } 813 } 814 815 public void zoomManyTimes(double x, double y, int times) { 816 double oldScale = getScale(); 817 double newScale = scaleZoomManyTimes(times); 818 zoomToFactor(x, y, newScale / oldScale); 819 } 820 821 public void zoomToFactor(double x, double y, double factor) { 822 double newScale = getScale()*factor; 823 EastNorth oldUnderMouse = getState().getForView(x, y).getEastNorth(); 824 MapViewState newState = getState().usingScale(newScale); 825 newState = newState.movedTo(newState.getForView(x, y), oldUnderMouse); 826 zoomTo(newState.getCenter().getEastNorth(), newScale); 827 } 828 829 public void zoomToFactor(EastNorth newCenter, double factor) { 830 zoomTo(newCenter, getScale()*factor); 831 } 832 833 public void zoomToFactor(double factor) { 834 zoomTo(getCenter(), getScale()*factor); 835 } 836 837 /** 838 * Zoom to given projection bounds. 839 * @param box new projection bounds 840 */ 841 public void zoomTo(ProjectionBounds box) { 842 double newScale = box.getScale(getWidth(), getHeight()); 843 newScale = scaleFloor(newScale); 844 zoomTo(box.getCenter(), newScale); 845 } 846 847 /** 848 * Zoom to given bounds. 849 * @param box new bounds 850 */ 851 public void zoomTo(Bounds box) { 852 zoomTo(new ProjectionBounds(getProjection().latlon2eastNorth(box.getMin()), 853 getProjection().latlon2eastNorth(box.getMax()))); 854 } 855 856 /** 857 * Zoom to given viewport data. 858 * @param viewport new viewport data 859 */ 860 public void zoomTo(ViewportData viewport) { 861 if (viewport == null) return; 862 if (viewport.getBounds() != null) { 863 if (!viewport.getBounds().hasExtend()) { 864 // see #18623 865 BoundingXYVisitor v = new BoundingXYVisitor(); 866 v.visit(viewport.getBounds()); 867 zoomTo(v); 868 } else { 869 zoomTo(viewport.getBounds()); 870 } 871 872 } else { 873 zoomTo(viewport.getCenter(), viewport.getScale(), true); 874 } 875 } 876 877 /** 878 * Set the new dimension to the view. 879 * @param v box to zoom to 880 */ 881 public void zoomTo(BoundingXYVisitor v) { 882 if (v == null) { 883 v = new BoundingXYVisitor(); 884 } 885 if (v.getBounds() == null) { 886 v.visit(getProjection().getWorldBoundsLatLon()); 887 } 888 889 // increase bbox. This is required 890 // especially if the bbox contains one single node, but helpful 891 // in most other cases as well. 892 // Do not zoom if the current scale covers the selection, #16706 893 final MapView mapView = MainApplication.getMap().mapView; 894 final double mapScale = mapView.getScale(); 895 final double minScale = v.getBounds().getScale(mapView.getWidth(), mapView.getHeight()); 896 v.enlargeBoundingBoxLogarithmically(); 897 final double maxScale = v.getBounds().getScale(mapView.getWidth(), mapView.getHeight()); 898 if (minScale <= mapScale && mapScale < maxScale) { 899 mapView.zoomTo(v.getBounds().getCenter()); 900 } else { 901 zoomTo(v.getBounds()); 902 } 903 } 904 905 private static class ZoomData { 906 private final EastNorth center; 907 private final double scale; 908 909 ZoomData(EastNorth center, double scale) { 910 this.center = center; 911 this.scale = scale; 912 } 913 914 public EastNorth getCenterEastNorth() { 915 return center; 916 } 917 918 public double getScale() { 919 return scale; 920 } 921 } 922 923 private final transient Stack<ZoomData> zoomUndoBuffer = new Stack<>(); 924 private final transient Stack<ZoomData> zoomRedoBuffer = new Stack<>(); 925 private long zoomTimestamp = System.currentTimeMillis(); 926 927 private void pushZoomUndo(EastNorth center, double scale) { 928 long now = System.currentTimeMillis(); 929 if ((now - zoomTimestamp) > (Config.getPref().getDouble("zoom.undo.delay", 1.0) * 1000)) { 930 zoomUndoBuffer.push(new ZoomData(center, scale)); 931 if (zoomUndoBuffer.size() > Config.getPref().getInt("zoom.undo.max", 50)) { 932 zoomUndoBuffer.remove(0); 933 } 934 zoomRedoBuffer.clear(); 935 } 936 zoomTimestamp = now; 937 } 938 939 /** 940 * Zoom to previous location. 941 */ 942 public void zoomPrevious() { 943 if (!zoomUndoBuffer.isEmpty()) { 944 ZoomData zoom = zoomUndoBuffer.pop(); 945 zoomRedoBuffer.push(new ZoomData(getCenter(), getScale())); 946 zoomNoUndoTo(zoom.getCenterEastNorth(), zoom.getScale(), false); 947 } 948 } 949 950 /** 951 * Zoom to next location. 952 */ 953 public void zoomNext() { 954 if (!zoomRedoBuffer.isEmpty()) { 955 ZoomData zoom = zoomRedoBuffer.pop(); 956 zoomUndoBuffer.push(new ZoomData(getCenter(), getScale())); 957 zoomNoUndoTo(zoom.getCenterEastNorth(), zoom.getScale(), false); 958 } 959 } 960 961 /** 962 * Determines if zoom history contains "undo" entries. 963 * @return {@code true} if zoom history contains "undo" entries 964 */ 965 public boolean hasZoomUndoEntries() { 966 return !zoomUndoBuffer.isEmpty(); 967 } 968 969 /** 970 * Determines if zoom history contains "redo" entries. 971 * @return {@code true} if zoom history contains "redo" entries 972 */ 973 public boolean hasZoomRedoEntries() { 974 return !zoomRedoBuffer.isEmpty(); 975 } 976 977 private BBox getBBox(Point p, int snapDistance) { 978 return new BBox(getLatLon(p.x - snapDistance, p.y - snapDistance), 979 getLatLon(p.x + snapDistance, p.y + snapDistance)); 980 } 981 982 /** 983 * The *result* does not depend on the current map selection state, neither does the result *order*. 984 * It solely depends on the distance to point p. 985 * @param p point 986 * @param predicate predicate to match 987 * 988 * @return a sorted map with the keys representing the distance of their associated nodes to point p. 989 */ 990 private Map<Double, List<Node>> getNearestNodesImpl(Point p, Predicate<OsmPrimitive> predicate) { 991 Map<Double, List<Node>> nearestMap = new TreeMap<>(); 992 DataSet ds = MainApplication.getLayerManager().getActiveDataSet(); 993 994 if (ds != null) { 995 double dist, snapDistanceSq = PROP_SNAP_DISTANCE.get(); 996 snapDistanceSq *= snapDistanceSq; 997 998 for (Node n : ds.searchNodes(getBBox(p, PROP_SNAP_DISTANCE.get()))) { 999 if (predicate.test(n) 1000 && (dist = getPoint2D(n).distanceSq(p)) < snapDistanceSq) { 1001 nearestMap.computeIfAbsent(dist, k -> new LinkedList<>()).add(n); 1002 } 1003 } 1004 } 1005 1006 return nearestMap; 1007 } 1008 1009 /** 1010 * The *result* does not depend on the current map selection state, 1011 * neither does the result *order*. 1012 * It solely depends on the distance to point p. 1013 * 1014 * @param p the point for which to search the nearest segment. 1015 * @param ignore a collection of nodes which are not to be returned. 1016 * @param predicate the returned objects have to fulfill certain properties. 1017 * 1018 * @return All nodes nearest to point p that are in a belt from 1019 * dist(nearest) to dist(nearest)+4px around p and 1020 * that are not in ignore. 1021 */ 1022 public final List<Node> getNearestNodes(Point p, 1023 Collection<Node> ignore, Predicate<OsmPrimitive> predicate) { 1024 List<Node> nearestList = Collections.emptyList(); 1025 1026 if (ignore == null) { 1027 ignore = Collections.emptySet(); 1028 } 1029 1030 Map<Double, List<Node>> nlists = getNearestNodesImpl(p, predicate); 1031 if (!nlists.isEmpty()) { 1032 Double minDistSq = null; 1033 for (Entry<Double, List<Node>> entry : nlists.entrySet()) { 1034 Double distSq = entry.getKey(); 1035 List<Node> nlist = entry.getValue(); 1036 1037 // filter nodes to be ignored before determining minDistSq.. 1038 nlist.removeAll(ignore); 1039 if (minDistSq == null) { 1040 if (!nlist.isEmpty()) { 1041 minDistSq = distSq; 1042 nearestList = new ArrayList<>(); 1043 nearestList.addAll(nlist); 1044 } 1045 } else { 1046 if (distSq-minDistSq < 16) { 1047 nearestList.addAll(nlist); 1048 } 1049 } 1050 } 1051 } 1052 1053 return nearestList; 1054 } 1055 1056 /** 1057 * The *result* does not depend on the current map selection state, 1058 * neither does the result *order*. 1059 * It solely depends on the distance to point p. 1060 * 1061 * @param p the point for which to search the nearest segment. 1062 * @param predicate the returned objects have to fulfill certain properties. 1063 * 1064 * @return All nodes nearest to point p that are in a belt from 1065 * dist(nearest) to dist(nearest)+4px around p. 1066 * @see #getNearestNodes(Point, Collection, Predicate) 1067 */ 1068 public final List<Node> getNearestNodes(Point p, Predicate<OsmPrimitive> predicate) { 1069 return getNearestNodes(p, null, predicate); 1070 } 1071 1072 /** 1073 * The *result* depends on the current map selection state IF use_selected is true. 1074 * 1075 * If more than one node within node.snap-distance pixels is found, 1076 * the nearest node selected is returned IF use_selected is true. 1077 * 1078 * Else the nearest new/id=0 node within about the same distance 1079 * as the true nearest node is returned. 1080 * 1081 * If no such node is found either, the true nearest node to p is returned. 1082 * 1083 * Finally, if a node is not found at all, null is returned. 1084 * 1085 * @param p the screen point 1086 * @param predicate this parameter imposes a condition on the returned object, e.g. 1087 * give the nearest node that is tagged. 1088 * @param useSelected make search depend on selection 1089 * 1090 * @return A node within snap-distance to point p, that is chosen by the algorithm described. 1091 */ 1092 public final Node getNearestNode(Point p, Predicate<OsmPrimitive> predicate, boolean useSelected) { 1093 return getNearestNode(p, predicate, useSelected, null); 1094 } 1095 1096 /** 1097 * The *result* depends on the current map selection state IF use_selected is true 1098 * 1099 * If more than one node within node.snap-distance pixels is found, 1100 * the nearest node selected is returned IF use_selected is true. 1101 * 1102 * If there are no selected nodes near that point, the node that is related to some of the preferredRefs 1103 * 1104 * Else the nearest new/id=0 node within about the same distance 1105 * as the true nearest node is returned. 1106 * 1107 * If no such node is found either, the true nearest node to p is returned. 1108 * 1109 * Finally, if a node is not found at all, null is returned. 1110 * 1111 * @param p the screen point 1112 * @param predicate this parameter imposes a condition on the returned object, e.g. 1113 * give the nearest node that is tagged. 1114 * @param useSelected make search depend on selection 1115 * @param preferredRefs primitives, whose nodes we prefer 1116 * 1117 * @return A node within snap-distance to point p, that is chosen by the algorithm described. 1118 * @since 6065 1119 */ 1120 public final Node getNearestNode(Point p, Predicate<OsmPrimitive> predicate, 1121 boolean useSelected, Collection<OsmPrimitive> preferredRefs) { 1122 1123 Map<Double, List<Node>> nlists = getNearestNodesImpl(p, predicate); 1124 if (nlists.isEmpty()) return null; 1125 1126 if (preferredRefs != null && preferredRefs.isEmpty()) preferredRefs = null; 1127 Node ntsel = null, ntnew = null, ntref = null; 1128 boolean useNtsel = useSelected; 1129 double minDistSq = nlists.keySet().iterator().next(); 1130 1131 for (Entry<Double, List<Node>> entry : nlists.entrySet()) { 1132 Double distSq = entry.getKey(); 1133 for (Node nd : entry.getValue()) { 1134 // find the nearest selected node 1135 if (ntsel == null && nd.isSelected()) { 1136 ntsel = nd; 1137 // if there are multiple nearest nodes, prefer the one 1138 // that is selected. This is required in order to drag 1139 // the selected node if multiple nodes have the same 1140 // coordinates (e.g. after unglue) 1141 useNtsel |= Utils.equalsEpsilon(distSq, minDistSq); 1142 } 1143 if (ntref == null && preferredRefs != null && Utils.equalsEpsilon(distSq, minDistSq)) { 1144 List<OsmPrimitive> ndRefs = nd.getReferrers(); 1145 if (preferredRefs.stream().anyMatch(ndRefs::contains)) { 1146 ntref = nd; 1147 } 1148 } 1149 // find the nearest newest node that is within about the same 1150 // distance as the true nearest node 1151 if (ntnew == null && nd.isNew() && (distSq-minDistSq < 1)) { 1152 ntnew = nd; 1153 } 1154 } 1155 } 1156 1157 // take nearest selected, nearest new or true nearest node to p, in that order 1158 if (ntsel != null && useNtsel) 1159 return ntsel; 1160 if (ntref != null) 1161 return ntref; 1162 if (ntnew != null) 1163 return ntnew; 1164 return nlists.values().iterator().next().get(0); 1165 } 1166 1167 /** 1168 * Convenience method to {@link #getNearestNode(Point, Predicate, boolean)}. 1169 * @param p the screen point 1170 * @param predicate this parameter imposes a condition on the returned object, e.g. 1171 * give the nearest node that is tagged. 1172 * 1173 * @return The nearest node to point p. 1174 */ 1175 public final Node getNearestNode(Point p, Predicate<OsmPrimitive> predicate) { 1176 return getNearestNode(p, predicate, true); 1177 } 1178 1179 /** 1180 * The *result* does not depend on the current map selection state, neither does the result *order*. 1181 * It solely depends on the distance to point p. 1182 * @param p the screen point 1183 * @param predicate this parameter imposes a condition on the returned object, e.g. 1184 * give the nearest node that is tagged. 1185 * 1186 * @return a sorted map with the keys representing the perpendicular 1187 * distance of their associated way segments to point p. 1188 */ 1189 private Map<Double, List<WaySegment>> getNearestWaySegmentsImpl(Point p, Predicate<OsmPrimitive> predicate) { 1190 Map<Double, List<WaySegment>> nearestMap = new TreeMap<>(); 1191 DataSet ds = MainApplication.getLayerManager().getActiveDataSet(); 1192 1193 if (ds != null) { 1194 double snapDistanceSq = Config.getPref().getInt("mappaint.segment.snap-distance", 10); 1195 snapDistanceSq *= snapDistanceSq; 1196 1197 for (Way w : ds.searchWays(getBBox(p, Config.getPref().getInt("mappaint.segment.snap-distance", 10)))) { 1198 if (!predicate.test(w)) { 1199 continue; 1200 } 1201 Node lastN = null; 1202 int i = -2; 1203 for (Node n : w.getNodes()) { 1204 i++; 1205 if (n.isDeleted() || n.isIncomplete()) { //FIXME: This shouldn't happen, raise exception? 1206 continue; 1207 } 1208 if (lastN == null) { 1209 lastN = n; 1210 continue; 1211 } 1212 1213 Point2D pA = getPoint2D(lastN); 1214 Point2D pB = getPoint2D(n); 1215 double c = pA.distanceSq(pB); 1216 double a = p.distanceSq(pB); 1217 double b = p.distanceSq(pA); 1218 1219 /* perpendicular distance squared 1220 * loose some precision to account for possible deviations in the calculation above 1221 * e.g. if identical (A and B) come about reversed in another way, values may differ 1222 * -- zero out least significant 32 dual digits of mantissa.. 1223 */ 1224 double perDistSq = Double.longBitsToDouble( 1225 Double.doubleToLongBits(a - (a - b + c) * (a - b + c) / 4 / c) 1226 >> 32 << 32); // resolution in numbers with large exponent not needed here.. 1227 1228 if (perDistSq < snapDistanceSq && a < c + snapDistanceSq && b < c + snapDistanceSq) { 1229 nearestMap.computeIfAbsent(perDistSq, k -> new LinkedList<>()).add(new WaySegment(w, i)); 1230 } 1231 1232 lastN = n; 1233 } 1234 } 1235 } 1236 1237 return nearestMap; 1238 } 1239 1240 /** 1241 * The result *order* depends on the current map selection state. 1242 * Segments within 10px of p are searched and sorted by their distance to {@code p}, 1243 * then, within groups of equally distant segments, prefer those that are selected. 1244 * 1245 * @param p the point for which to search the nearest segments. 1246 * @param ignore a collection of segments which are not to be returned. 1247 * @param predicate the returned objects have to fulfill certain properties. 1248 * 1249 * @return all segments within 10px of p that are not in ignore, 1250 * sorted by their perpendicular distance. 1251 */ 1252 public final List<WaySegment> getNearestWaySegments(Point p, 1253 Collection<WaySegment> ignore, Predicate<OsmPrimitive> predicate) { 1254 List<WaySegment> nearestList = new ArrayList<>(); 1255 List<WaySegment> unselected = new LinkedList<>(); 1256 1257 for (List<WaySegment> wss : getNearestWaySegmentsImpl(p, predicate).values()) { 1258 // put selected waysegs within each distance group first 1259 // makes the order of nearestList dependent on current selection state 1260 for (WaySegment ws : wss) { 1261 (ws.getWay().isSelected() ? nearestList : unselected).add(ws); 1262 } 1263 nearestList.addAll(unselected); 1264 unselected.clear(); 1265 } 1266 if (ignore != null) { 1267 nearestList.removeAll(ignore); 1268 } 1269 1270 return nearestList; 1271 } 1272 1273 /** 1274 * The result *order* depends on the current map selection state. 1275 * 1276 * @param p the point for which to search the nearest segments. 1277 * @param predicate the returned objects have to fulfill certain properties. 1278 * 1279 * @return all segments within 10px of p, sorted by their perpendicular distance. 1280 * @see #getNearestWaySegments(Point, Collection, Predicate) 1281 */ 1282 public final List<WaySegment> getNearestWaySegments(Point p, Predicate<OsmPrimitive> predicate) { 1283 return getNearestWaySegments(p, null, predicate); 1284 } 1285 1286 /** 1287 * The *result* depends on the current map selection state IF use_selected is true. 1288 * 1289 * @param p the point for which to search the nearest segment. 1290 * @param predicate the returned object has to fulfill certain properties. 1291 * @param useSelected whether selected way segments should be preferred. 1292 * 1293 * @return The nearest way segment to point p, 1294 * and, depending on use_selected, prefers a selected way segment, if found. 1295 * @see #getNearestWaySegments(Point, Collection, Predicate) 1296 */ 1297 public final WaySegment getNearestWaySegment(Point p, Predicate<OsmPrimitive> predicate, boolean useSelected) { 1298 WaySegment wayseg = null; 1299 WaySegment ntsel = null; 1300 1301 for (List<WaySegment> wslist : getNearestWaySegmentsImpl(p, predicate).values()) { 1302 if (wayseg != null && ntsel != null) { 1303 break; 1304 } 1305 for (WaySegment ws : wslist) { 1306 if (wayseg == null) { 1307 wayseg = ws; 1308 } 1309 if (ntsel == null && ws.getWay().isSelected()) { 1310 ntsel = ws; 1311 } 1312 } 1313 } 1314 1315 return (ntsel != null && useSelected) ? ntsel : wayseg; 1316 } 1317 1318 /** 1319 * The *result* depends on the current map selection state IF use_selected is true. 1320 * 1321 * @param p the point for which to search the nearest segment. 1322 * @param predicate the returned object has to fulfill certain properties. 1323 * @param useSelected whether selected way segments should be preferred. 1324 * @param preferredRefs - prefer segments related to these primitives, may be null 1325 * 1326 * @return The nearest way segment to point p, 1327 * and, depending on use_selected, prefers a selected way segment, if found. 1328 * Also prefers segments of ways that are related to one of preferredRefs primitives 1329 * 1330 * @see #getNearestWaySegments(Point, Collection, Predicate) 1331 * @since 6065 1332 */ 1333 public final WaySegment getNearestWaySegment(Point p, Predicate<OsmPrimitive> predicate, 1334 boolean useSelected, Collection<OsmPrimitive> preferredRefs) { 1335 WaySegment wayseg = null; 1336 if (preferredRefs != null && preferredRefs.isEmpty()) 1337 preferredRefs = null; 1338 1339 for (List<WaySegment> wslist : getNearestWaySegmentsImpl(p, predicate).values()) { 1340 for (WaySegment ws : wslist) { 1341 if (wayseg == null) { 1342 wayseg = ws; 1343 } 1344 if (useSelected && ws.getWay().isSelected()) { 1345 return ws; 1346 } 1347 if (!Utils.isEmpty(preferredRefs)) { 1348 // prefer ways containing given nodes 1349 if (preferredRefs.contains(ws.getFirstNode()) || preferredRefs.contains(ws.getSecondNode())) { 1350 return ws; 1351 } 1352 Collection<OsmPrimitive> wayRefs = ws.getWay().getReferrers(); 1353 // prefer member of the given relations 1354 for (OsmPrimitive ref: preferredRefs) { 1355 if (ref instanceof Relation && wayRefs.contains(ref)) { 1356 return ws; 1357 } 1358 } 1359 } 1360 } 1361 } 1362 return wayseg; 1363 } 1364 1365 /** 1366 * Convenience method to {@link #getNearestWaySegment(Point, Predicate, boolean)}. 1367 * @param p the point for which to search the nearest segment. 1368 * @param predicate the returned object has to fulfill certain properties. 1369 * 1370 * @return The nearest way segment to point p. 1371 */ 1372 public final WaySegment getNearestWaySegment(Point p, Predicate<OsmPrimitive> predicate) { 1373 return getNearestWaySegment(p, predicate, true); 1374 } 1375 1376 /** 1377 * The *result* does not depend on the current map selection state, 1378 * neither does the result *order*. 1379 * It solely depends on the perpendicular distance to point p. 1380 * 1381 * @param p the point for which to search the nearest ways. 1382 * @param ignore a collection of ways which are not to be returned. 1383 * @param predicate the returned object has to fulfill certain properties. 1384 * 1385 * @return all nearest ways to the screen point given that are not in ignore. 1386 * @see #getNearestWaySegments(Point, Collection, Predicate) 1387 */ 1388 public final List<Way> getNearestWays(Point p, 1389 Collection<Way> ignore, Predicate<OsmPrimitive> predicate) { 1390 Set<Way> wset = new HashSet<>(); 1391 1392 List<Way> nearestList = getNearestWaySegmentsImpl(p, predicate).values().stream() 1393 .flatMap(Collection::stream) 1394 .filter(ws -> wset.add(ws.getWay())) 1395 .map(ws -> ws.getWay()) 1396 .collect(Collectors.toList()); 1397 if (ignore != null) { 1398 nearestList.removeAll(ignore); 1399 } 1400 1401 return nearestList; 1402 } 1403 1404 /** 1405 * The *result* does not depend on the current map selection state, 1406 * neither does the result *order*. 1407 * It solely depends on the perpendicular distance to point p. 1408 * 1409 * @param p the point for which to search the nearest ways. 1410 * @param predicate the returned object has to fulfill certain properties. 1411 * 1412 * @return all nearest ways to the screen point given. 1413 * @see #getNearestWays(Point, Collection, Predicate) 1414 */ 1415 public final List<Way> getNearestWays(Point p, Predicate<OsmPrimitive> predicate) { 1416 return getNearestWays(p, null, predicate); 1417 } 1418 1419 /** 1420 * The *result* depends on the current map selection state. 1421 * 1422 * @param p the point for which to search the nearest segment. 1423 * @param predicate the returned object has to fulfill certain properties. 1424 * 1425 * @return The nearest way to point p, prefer a selected way if there are multiple nearest. 1426 * @see #getNearestWaySegment(Point, Predicate) 1427 */ 1428 public final Way getNearestWay(Point p, Predicate<OsmPrimitive> predicate) { 1429 WaySegment nearestWaySeg = getNearestWaySegment(p, predicate); 1430 return (nearestWaySeg == null) ? null : nearestWaySeg.getWay(); 1431 } 1432 1433 /** 1434 * The *result* does not depend on the current map selection state, 1435 * neither does the result *order*. 1436 * It solely depends on the distance to point p. 1437 * 1438 * First, nodes will be searched. If there are nodes within BBox found, 1439 * return a collection of those nodes only. 1440 * 1441 * If no nodes are found, search for nearest ways. If there are ways 1442 * within BBox found, return a collection of those ways only. 1443 * 1444 * If nothing is found, return an empty collection. 1445 * 1446 * @param p The point on screen. 1447 * @param ignore a collection of ways which are not to be returned. 1448 * @param predicate the returned object has to fulfill certain properties. 1449 * 1450 * @return Primitives nearest to the given screen point that are not in ignore. 1451 * @see #getNearestNodes(Point, Collection, Predicate) 1452 * @see #getNearestWays(Point, Collection, Predicate) 1453 */ 1454 public final List<OsmPrimitive> getNearestNodesOrWays(Point p, 1455 Collection<OsmPrimitive> ignore, Predicate<OsmPrimitive> predicate) { 1456 List<OsmPrimitive> nearestList = Collections.emptyList(); 1457 OsmPrimitive osm = getNearestNodeOrWay(p, predicate, false); 1458 1459 if (osm != null) { 1460 if (osm instanceof Node) { 1461 nearestList = new ArrayList<>(getNearestNodes(p, predicate)); 1462 } else if (osm instanceof Way) { 1463 nearestList = new ArrayList<>(getNearestWays(p, predicate)); 1464 } 1465 if (ignore != null) { 1466 nearestList.removeAll(ignore); 1467 } 1468 } 1469 1470 return nearestList; 1471 } 1472 1473 /** 1474 * The *result* does not depend on the current map selection state, 1475 * neither does the result *order*. 1476 * It solely depends on the distance to point p. 1477 * 1478 * @param p The point on screen. 1479 * @param predicate the returned object has to fulfill certain properties. 1480 * @return Primitives nearest to the given screen point. 1481 * @see #getNearestNodesOrWays(Point, Collection, Predicate) 1482 */ 1483 public final List<OsmPrimitive> getNearestNodesOrWays(Point p, Predicate<OsmPrimitive> predicate) { 1484 return getNearestNodesOrWays(p, null, predicate); 1485 } 1486 1487 /** 1488 * This is used as a helper routine to {@link #getNearestNodeOrWay(Point, Predicate, boolean)} 1489 * It decides, whether to yield the node to be tested or look for further (way) candidates. 1490 * 1491 * @param osm node to check 1492 * @param p point clicked 1493 * @param useSelected whether to prefer selected nodes 1494 * @return true, if the node fulfills the properties of the function body 1495 */ 1496 private boolean isPrecedenceNode(Node osm, Point p, boolean useSelected) { 1497 if (osm != null) { 1498 if (p.distanceSq(getPoint2D(osm)) <= (4*4)) return true; 1499 if (osm.isTagged()) return true; 1500 if (useSelected && osm.isSelected()) return true; 1501 } 1502 return false; 1503 } 1504 1505 /** 1506 * The *result* depends on the current map selection state IF use_selected is true. 1507 * 1508 * IF use_selected is true, use {@link #getNearestNode(Point, Predicate)} to find 1509 * the nearest, selected node. If not found, try {@link #getNearestWaySegment(Point, Predicate)} 1510 * to find the nearest selected way. 1511 * 1512 * IF use_selected is false, or if no selected primitive was found, do the following. 1513 * 1514 * If the nearest node found is within 4px of p, simply take it. 1515 * Else, find the nearest way segment. Then, if p is closer to its 1516 * middle than to the node, take the way segment, else take the node. 1517 * 1518 * Finally, if no nearest primitive is found at all, return null. 1519 * 1520 * @param p The point on screen. 1521 * @param predicate the returned object has to fulfill certain properties. 1522 * @param useSelected whether to prefer primitives that are currently selected or referred by selected primitives 1523 * 1524 * @return A primitive within snap-distance to point p, 1525 * that is chosen by the algorithm described. 1526 * @see #getNearestNode(Point, Predicate) 1527 * @see #getNearestWay(Point, Predicate) 1528 */ 1529 public final OsmPrimitive getNearestNodeOrWay(Point p, Predicate<OsmPrimitive> predicate, boolean useSelected) { 1530 Collection<OsmPrimitive> sel; 1531 DataSet ds = MainApplication.getLayerManager().getActiveDataSet(); 1532 if (useSelected && ds != null) { 1533 sel = ds.getSelected(); 1534 } else { 1535 sel = null; 1536 } 1537 OsmPrimitive osm = getNearestNode(p, predicate, useSelected, sel); 1538 1539 if (isPrecedenceNode((Node) osm, p, useSelected)) return osm; 1540 WaySegment ws; 1541 if (useSelected) { 1542 ws = getNearestWaySegment(p, predicate, useSelected, sel); 1543 } else { 1544 ws = getNearestWaySegment(p, predicate, useSelected); 1545 } 1546 if (ws == null) return osm; 1547 1548 if ((ws.getWay().isSelected() && useSelected) || osm == null) { 1549 // either (no _selected_ nearest node found, if desired) or no nearest node was found 1550 osm = ws.getWay(); 1551 } else { 1552 int maxWaySegLenSq = 3*PROP_SNAP_DISTANCE.get(); 1553 maxWaySegLenSq *= maxWaySegLenSq; 1554 1555 Point2D wp1 = getPoint2D(ws.getFirstNode()); 1556 Point2D wp2 = getPoint2D(ws.getSecondNode()); 1557 1558 // is wayseg shorter than maxWaySegLenSq and 1559 // is p closer to the middle of wayseg than to the nearest node? 1560 if (wp1.distanceSq(wp2) < maxWaySegLenSq && 1561 p.distanceSq(project(0.5, wp1, wp2)) < p.distanceSq(getPoint2D((Node) osm))) { 1562 osm = ws.getWay(); 1563 } 1564 } 1565 return osm; 1566 } 1567 1568 /** 1569 * if r = 0 returns a, if r=1 returns b, 1570 * if r = 0.5 returns center between a and b, etc.. 1571 * 1572 * @param r scale value 1573 * @param a root of vector 1574 * @param b vector 1575 * @return new point at a + r*(ab) 1576 */ 1577 public static Point2D project(double r, Point2D a, Point2D b) { 1578 Point2D ret = null; 1579 1580 if (a != null && b != null) { 1581 ret = new Point2D.Double(a.getX() + r*(b.getX()-a.getX()), 1582 a.getY() + r*(b.getY()-a.getY())); 1583 } 1584 return ret; 1585 } 1586 1587 /** 1588 * The *result* does not depend on the current map selection state, neither does the result *order*. 1589 * It solely depends on the distance to point p. 1590 * 1591 * @param p The point on screen. 1592 * @param ignore a collection of ways which are not to be returned. 1593 * @param predicate the returned object has to fulfill certain properties. 1594 * 1595 * @return a list of all objects that are nearest to point p and 1596 * not in ignore or an empty list if nothing was found. 1597 */ 1598 public final List<OsmPrimitive> getAllNearest(Point p, 1599 Collection<OsmPrimitive> ignore, Predicate<OsmPrimitive> predicate) { 1600 Set<Way> wset = new HashSet<>(); 1601 1602 // add nearby ways 1603 List<OsmPrimitive> nearestList = getNearestWaySegmentsImpl(p, predicate).values().stream() 1604 .flatMap(Collection::stream) 1605 .filter(ws -> wset.add(ws.getWay())) 1606 .map(ws -> ws.getWay()) 1607 .collect(Collectors.toList()); 1608 1609 // add nearby nodes 1610 getNearestNodesImpl(p, predicate).values() 1611 .forEach(nearestList::addAll); 1612 1613 // add parent relations of nearby nodes and ways 1614 Set<OsmPrimitive> parentRelations = nearestList.stream() 1615 .flatMap(o -> o.referrers(Relation.class)) 1616 .filter(predicate) 1617 .collect(Collectors.toSet()); 1618 nearestList.addAll(parentRelations); 1619 1620 if (ignore != null) { 1621 nearestList.removeAll(ignore); 1622 } 1623 1624 return nearestList; 1625 } 1626 1627 /** 1628 * The *result* does not depend on the current map selection state, neither does the result *order*. 1629 * It solely depends on the distance to point p. 1630 * 1631 * @param p The point on screen. 1632 * @param predicate the returned object has to fulfill certain properties. 1633 * 1634 * @return a list of all objects that are nearest to point p 1635 * or an empty list if nothing was found. 1636 * @see #getAllNearest(Point, Collection, Predicate) 1637 */ 1638 public final List<OsmPrimitive> getAllNearest(Point p, Predicate<OsmPrimitive> predicate) { 1639 return getAllNearest(p, null, predicate); 1640 } 1641 1642 /** 1643 * Returns the projection to be used in calculating stuff. 1644 * @return The projection to be used in calculating stuff. 1645 */ 1646 public Projection getProjection() { 1647 return state.getProjection(); 1648 } 1649 1650 @Override 1651 public String helpTopic() { 1652 String n = getClass().getName(); 1653 return n.substring(n.lastIndexOf('.')+1); 1654 } 1655 1656 /** 1657 * Return a ID which is unique as long as viewport dimensions are the same 1658 * @return A unique ID, as long as viewport dimensions are the same 1659 */ 1660 public int getViewID() { 1661 EastNorth center = getCenter(); 1662 String x = new StringBuilder().append(center.east()) 1663 .append('_').append(center.north()) 1664 .append('_').append(getScale()) 1665 .append('_').append(getWidth()) 1666 .append('_').append(getHeight()) 1667 .append('_').append(getProjection()).toString(); 1668 CRC32 id = new CRC32(); 1669 id.update(x.getBytes(StandardCharsets.UTF_8)); 1670 return (int) id.getValue(); 1671 } 1672 1673 /** 1674 * Set new cursor. 1675 * @param cursor The new cursor to use. 1676 * @param reference A reference object that can be passed to the next set/reset calls to identify the caller. 1677 */ 1678 public void setNewCursor(Cursor cursor, Object reference) { 1679 cursorManager.setNewCursor(cursor, reference); 1680 } 1681 1682 /** 1683 * Set new cursor. 1684 * @param cursor the type of predefined cursor 1685 * @param reference A reference object that can be passed to the next set/reset calls to identify the caller. 1686 */ 1687 public void setNewCursor(int cursor, Object reference) { 1688 setNewCursor(Cursor.getPredefinedCursor(cursor), reference); 1689 } 1690 1691 /** 1692 * Remove the new cursor and reset to previous 1693 * @param reference Cursor reference 1694 */ 1695 public void resetCursor(Object reference) { 1696 cursorManager.resetCursor(reference); 1697 } 1698 1699 /** 1700 * Gets the cursor manager that is used for this NavigatableComponent. 1701 * @return The cursor manager. 1702 */ 1703 public CursorManager getCursorManager() { 1704 return cursorManager; 1705 } 1706 1707 /** 1708 * Get a max scale for projection that describes world in 1/512 of the projection unit 1709 * @return max scale 1710 */ 1711 public double getMaxScale() { 1712 ProjectionBounds world = getMaxProjectionBounds(); 1713 return Math.max( 1714 world.maxNorth-world.minNorth, 1715 world.maxEast-world.minEast 1716 )/512; 1717 } 1718}