The transformation to create is specified by the FORWARD parameter. In what follows "X" refers to the inputs of the PolyMap, and "Y" to the outputs of the PolyMap. The forward transformation transforms input values (X) into output values (Y), and the inverse transformation transforms output values (Y) into input values (X). Within a PolyMap, each transformation is represented by an independent set of polynomials: Y=P_f(X) for the forward transformation and X=P_i(Y) for the inverse transformation.
If FORWARD is .FALSE., a new inverse transformation is created by first finding the output values (Y) using the forward transformation (which must be available) at a regular grid of points (X) covering a rectangular region of the PolyMap's input space. The coefficients of the required inverse polynomial, X=P_i(Y), are chosen in order to minimise the sum of the squared residuals between the sampled values of X and P_i(Y).
If FORWARD is .TRUE., a new forward transformation is created by first finding the input values (X) using the inverse transformation (which must be available) at a regular grid of points (Y) covering a rectangular region of the PolyMap's output space. The coefficients of the required forward polynomial, Y=P_f(X), are chosen in order to minimise the sum of the squared residuals between the sampled values of Y and P_f(X).
This fitting process is performed repeatedly with increasing polynomial orders (starting with quadratic) until the target accuracy is achieved, or a specified maximum order is reached. If the target accuracy cannot be achieved even with this maximum-order polynomial, the best fitting maximum-order polynomial is returned so long as its accuracy is better than MAXACC. If it is not, an error is reported.
AST A Library for Handling World Coordinate Systems in Astronomy