This function is provided to help answer general questions about coordinate systems, such as typically arise when coordinate information is imported into a program as part of an initially unknown dataset. For example:
To perform a search, you supply a "target" Frame (or FrameSet) which represents the set of coordinate systems to be searched. If a basic Frame is given as the target, this set of coordinate systems consists of the one described by this Frame, plus all other "virtual" coordinate systems which can potentially be reached from it by applying built-in conversions (for example, any of the celestial coordinate conversions known to the AST library would constitute a "built-in" conversion). If a FrameSet is given as the target, the set of coordinate systems to be searched consists of the union of those represented by all the individual Frames within it.
To select from this large set of possible coordinate systems, you supply a "template" Frame which is an instance of the type of Frame you are looking for. Effectively, you then ask the function to "find a coordinate system that looks like this".
You can make your request more or less specific by setting attribute values for the template Frame. If a particular attribute is set in the template, then the function will only find coordinate systems which have exactly the same value for that attribute. If you leave a template attribute un-set, however, then the function has discretion about the value the attribute should have in any coordinate system it finds. The attribute will then take its value from one of the actual (rather than virtual) coordinate systems in the target. If the target is a FrameSet, its Current attribute will be modified to indicate which of its Frames was used for this purpose.
The result of this process is a coordinate system represented by a hybrid Frame which acquires some attributes from the template (but only if they were set) and the remainder from the target. This represents the "best compromise" between what you asked for and what was available. A Mapping is then generated which converts from the target coordinate system to this hybrid one, and the returned FrameSet encapsulates all of this information.
Note that if a FrameSet is supplied (and a suitable coordinate system is found), then its Current attribute will be modified to indicate which Frame was used to obtain attribute values which were not specified by the template. This Frame will, in some sense, represent the "closest" non-virtual coordinate system to the one you requested.
The function will first try to find a suitable coordinate system whose Domain attribute equals the first domain in this list. If this fails, the second domain in the list will be used, and so on, until a result is obtained. A blank domain (e.g. two consecutive commas) indicates that any coordinate system is acceptable (subject to the template) regardless of its domain.
This list is case-insensitive and all white space is ignored. If you do not wish to restrict the domain in this way, you should supply an empty string.
If a FrameSet is returned, it will contain two Frames. Frame number 1 (its base Frame) represents the target coordinate system and will be the same as the (base Frame of the) target. Frame number 2 (its current Frame) will be a Frame representing the coordinate system which the function found. The Mapping which inter-relates these two Frames will describe how to convert between their respective coordinate systems.
Note that a FrameSet may be used both as a Mapping and as a Frame. If the result is used as a Mapping (e.g. with astTran2), then it provides a means of converting coordinates from the target coordinate system into the new coordinate system that was found (and vice versa if its inverse transformation is selected). If it is used as a Frame, its attributes will describe the new coordinate system.
If no celestial coordinate system can be found, a value of AST__NULL will be returned without error.
This is acomplished by setting the MaxAxes attribute of the template SkyFrame to a large number (larger than or equal to the number of axes in the target CmpFrame). This allows the SkyFrame to be used as a match for Frames containing from 2 to 100 axes.
Only if no 2-dimensional coordinate systems can be reached by applying built-in conversions to any of the Frames in the target will a value of AST__NULL be returned.
If we had wanted a Frame representing the actual (1, 2 or 3-dimensional) coordinate system found, we could set the PreserveAxes attribute to a non-zero value in the template.
AST A Library for Handling World Coordinate Systems in Astronomy